Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 773405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174104

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CR-KP) represents an emerging threat to public health. CR-KP infections result in elevated morbidity and mortality. This fact, coupled with their global dissemination and increasingly limited number of therapeutic options, highlights the urgency of novel antimicrobials. Innovative strategies linking genome-wide interrogation with multi-layered metabolic data integration can accelerate the early steps of drug development, particularly target selection. Using the BioCyc ontology, we generated and manually refined a metabolic network for a CR-KP, K. pneumoniae Kp13. Converted into a reaction graph, we conducted topological-based analyses in this network to prioritize pathways exhibiting druggable features and fragile metabolic points likely exploitable to develop novel antimicrobials. Our results point to the aptness of previously recognized pathways, such as lipopolysaccharide and peptidoglycan synthesis, and casts light on the possibility of targeting less explored cellular functions. These functions include the production of lipoate, trehalose, glycine betaine, and flavin, as well as the salvaging of methionine. Energy metabolism pathways emerged as attractive targets in the context of carbapenem exposure, targeted either alone or in conjunction with current therapeutic options. These results prompt further experimental investigation aimed at controlling this highly relevant pathogen.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo
2.
Front Pharmacol ; 12: 647060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177572

RESUMO

Decades of successful use of antibiotics is currently challenged by the emergence of increasingly resistant bacterial strains. Novel drugs are urgently required but, in a scenario where private investment in the development of new antimicrobials is declining, efforts to combat drug-resistant infections become a worldwide public health problem. Reasons behind unsuccessful new antimicrobial development projects range from inadequate selection of the molecular targets to a lack of innovation. In this context, increasingly available omics data for multiple pathogens has created new drug discovery and development opportunities to fight infectious diseases. Identification of an appropriate molecular target is currently accepted as a critical step of the drug discovery process. Here, we review how diverse layers of multi-omics data in conjunction with structural/functional analysis and systems biology can be used to prioritize the best candidate proteins. Once the target is selected, virtual screening can be used as a robust methodology to explore molecular scaffolds that could act as inhibitors, guiding the development of new drug lead compounds. This review focuses on how the advent of omics and the development and application of bioinformatics strategies conduct a "big-data era" that improves target selection and lead compound identification in a cost-effective and shortened timeline.

3.
World J Microbiol Biotechnol ; 37(4): 61, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33719024

RESUMO

In lactobacilli, CcpA is known to modulate the expression of genes involved in sugar metabolism, stress response and aerobic adaptation. This study aimed to evaluate a ccpA mutant of Lacticaseibacillus casei BL23 to increase lactic acid production using cheese whey. The ccpA derivative (BL71) showed better growth than the L. casei wild-type in the whey medium. In a stirred tank reactor, at 48 h, lactate production by BL71 was eightfold higher than that by BL23. In batch fermentations, the final values reached were 44.23 g L-1 for BL71 and 27.58 g L-1 for BL23. Due to a decrease in the delay of lactate production in the mutant, lactate productivity increased from 0.17 g (L.h)-1 with BL23 to 0.80 g (L.h)-1 with BL71. We found that CcpA would play additional roles in nitrogen metabolism by the regulation of the proteolytic system. BL71 displayed higher activity of the PepX, PepQ and PrtP enzymes than BL23. Analysis of prtP expression confirmed this deregulation in BL71. Promoter analysis of the prtP gene revealed CcpA binding sites with high identity to the cre consensus sequence and the interaction of CcpA with this promoter was confirmed in vitro. We postulate that deregulation of the proteolytic system in BL71 allows a better exploitation of nitrogen resources in cheese whey, resulting in enhanced fermentation capacity. Therefore, the ccpA gene could be a good target for future technological developments aimed at effective and inexpensive lactate production from dairy industrial wastes.


Assuntos
Queijo , Meios de Cultura/química , Ácido Láctico/metabolismo , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Soro do Leite/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Metabolismo dos Carboidratos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Indústria de Laticínios , Fermentação , Concentração de Íons de Hidrogênio , Resíduos Industriais
4.
World J Microbiol Biotechnol ; 36(11): 169, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33043388

RESUMO

The surface-layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling subunits, non-covalently bound to the most outer cell wall envelope, which constitutes up to 20% of the total cell protein content. These attributes make S-layer proteins an excellent anchor for the development of microbial cell-surface display systems. In L. acidophilus, the S-layer is formed predominantly by the protein SlpA. We have previously shown that the C-terminal domain of SlpA is responsible for the cell wall anchorage on L. acidophilus ATCC 4356. In the present study, we evaluated the C-terminal domain of SlpA of L. acidophilus ATCC 4356 as a potential anchor domain to display functional proteins on the surface of non-genetically modified lactic acid bacteria (LAB). To this end, green fluorescent protein (GFP)-CTSlpA was firstly produced in Escherichia coli and the recombinant proteins were able to spontaneously bind to the cell wall of LAB in a binding assay. GFP was successfully displayed on the S-layer stripped surface of L. acidophilus. Both the binding stability and cell survival of L. acidophilus decorated with the recombinant protein were then studied in simulated gastrointestinal conditions. Furthermore, NaCl was tested as a safer alternative to LiCl for S-layer removal. This study presents the development of a protein delivery platform involving L. acidophilus, a microorganism generally regarded as safe, which utilizes the contiguous, non-covalently attached S-layer at the cell surface of the bacterium without introducing any genetic modification.


Assuntos
Membrana Celular/química , Lactobacillales/metabolismo , Lactobacillus acidophilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/química , Clonagem Molecular , Meios de Cultura/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Viabilidade Microbiana , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Mem Inst Oswaldo Cruz ; 115: e200184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785422

RESUMO

BACKGROUND Carrion's disease (CD) is a neglected biphasic illness caused by Bartonella bacilliformis, a Gram-negative bacteria found in the Andean valleys. The spread of resistant strains underlines the need for novel antimicrobials against B. bacilliformis and related bacterial pathogens. OBJECTIVE The main aim of this study was to integrate genomic-scale data to shortlist a set of proteins that could serve as attractive targets for new antimicrobial discovery to combat B. bacilliformis. METHODS We performed a multidimensional genomic scale analysis of potential and relevant targets which includes structural druggability, metabolic analysis and essentiality criteria to select proteins with attractive features for drug discovery. FINDINGS We shortlisted seventeen relevant proteins to develop new drugs against the causative agent of Carrion's disease. Particularly, the protein products of fabI, folA, aroA, trmFO, uppP and murE genes, meet an important number of desirable features that make them attractive targets for new drug development. This data compendium is freely available as a web server (http://target.sbg.qb.fcen.uba.ar/). MAIN CONCLUSION This work represents an effort to reduce the costs in the first phases of B. bacilliformis drug discovery.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Bartonella/tratamento farmacológico , Bartonella bacilliformis/efeitos dos fármacos , Bartonella bacilliformis/genética , Bartonella bacilliformis/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Genômica , Humanos , Reação em Cadeia da Polimerase
6.
Mem. Inst. Oswaldo Cruz ; 115: e200184, 2020. tab, graf
Artigo em Inglês | LILACS, Sec. Est. Saúde SP | ID: biblio-1135263

RESUMO

BACKGROUND Carrion's disease (CD) is a neglected biphasic illness caused by Bartonella bacilliformis, a Gram-negative bacteria found in the Andean valleys. The spread of resistant strains underlines the need for novel antimicrobials against B. bacilliformis and related bacterial pathogens. OBJECTIVE The main aim of this study was to integrate genomic-scale data to shortlist a set of proteins that could serve as attractive targets for new antimicrobial discovery to combat B. bacilliformis. METHODS We performed a multidimensional genomic scale analysis of potential and relevant targets which includes structural druggability, metabolic analysis and essentiality criteria to select proteins with attractive features for drug discovery. FINDINGS We shortlisted seventeen relevant proteins to develop new drugs against the causative agent of Carrion's disease. Particularly, the protein products of fabI, folA, aroA, trmFO, uppP and murE genes, meet an important number of desirable features that make them attractive targets for new drug development. This data compendium is freely available as a web server (http://target.sbg.qb.fcen.uba.ar/). MAIN CONCLUSION This work represents an effort to reduce the costs in the first phases of B. bacilliformis drug discovery.


Assuntos
Humanos , Infecções por Bartonella/tratamento farmacológico , Bartonella bacilliformis/efeitos dos fármacos , Antibacterianos/uso terapêutico , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/genética , Reação em Cadeia da Polimerase , Genômica , Bartonella bacilliformis/isolamento & purificação , Bartonella bacilliformis/genética
7.
Mem Inst Oswaldo Cruz, v. 115, e200184, jul. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3184

RESUMO

BACKGROUND: Carrion’s disease (CD) is a neglected biphasic illness caused by Bartonella bacilliformis, a Gram-negative bacteria found in the Andean valleys. The spread of resistant strains underlines the need for novel antimicrobials against B. bacilliformis and related bacterial pathogens. OBJECTIVE: The main aim of this study was to integrate genomic-scale data to shortlist a set of proteins that could serve as attractive targets for new antimicrobial discovery to combat B. bacilliformis. METHODS: We performed a multidimensional genomic scale analysis of potential and relevant targets which includes structural druggability, metabolic analysis and essentiality criteria to select proteins with attractive features for drug discovery. FINDINGS: We shortlisted seventeen relevant proteins to develop new drugs against the causative agent of Carrion’s disease. Particularly, the protein products of fabI, folA, aroA, trmFO, uppP and murE genes, meet an important number of desirable features that make them attractive targets for new drug development. This data compendium is freely available as a web server (http://target.sbg.qb.fcen.uba.ar/). MAIN CONCLUSION: This work represents an effort to reduce the costs in the first phases of B. bacilliformis drug discovery.

8.
Appl Microbiol Biotechnol ; 103(12): 4839-4857, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31053916

RESUMO

The surface layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling, proteinaceous subunits non-covalently bound to the outmost bacterial cell wall envelope and is involved in the adherence of bacteria to host cells. We have previously described that the S-layer protein of L. acidophilus possesses anti-viral and anti-bacterial properties. In this work, we extracted and purified S-layer proteins from L. acidophilus ATCC 4356 cells to study their interaction with cell wall components from prokaryotic (i.e., peptidoglycan and lipoteichoic acids) and eukaryotic origin (i.e., mucin and chitin), as well as with viruses, bacteria, yeast, and blood cells. Using chimeric S-layer fused to green fluorescent protein (GFP) from different parts of the protein, we analyzed their binding capacity. Our results show that the C-terminal part of the S-layer protein presents lectin-like activity, interacting with different glycoepitopes. We further demonstrate that lipoteichoic acid (LTA) serves as an anchor for the S-layer protein. Finally, a structure for the C-terminal part of S-layer and possible binding sites were predicted by a homology-based model.


Assuntos
Proteínas de Bactérias/metabolismo , Lactobacillus acidophilus/metabolismo , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Fluorescência Verde/genética , Glicoproteínas de Membrana/isolamento & purificação , Ligação Proteica
9.
Genome Announc ; 6(7)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449405

RESUMO

Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production.

10.
Appl Microbiol Biotechnol ; 100(19): 8475-84, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27376794

RESUMO

In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.


Assuntos
Expressão Gênica , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Glicoproteínas de Membrana/metabolismo , Pressão Osmótica , Lactobacillus acidophilus/efeitos dos fármacos , Cloreto de Sódio/metabolismo
11.
Genome Announc ; 3(1)2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25593259

RESUMO

We present the 1,956,699-bp draft genome sequence of Lactobacillus acidophilus strain ATCC 4356. Comparative genomic analysis revealed 99.96% similarity with L. acidophilus NCFM NC_006814.3 and 99.97% with La-14 NC_021181.2 genomes.

12.
PLoS One ; 9(10): e111114, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25354162

RESUMO

Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity.


Assuntos
Aedes/efeitos dos fármacos , Bacillaceae/química , Culex/efeitos dos fármacos , Glicoproteínas de Membrana/toxicidade , Sequência de Aminoácidos , Animais , Quitina/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/farmacologia , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Esporos Bacterianos/química
13.
Microbiology (Reading) ; 159(Pt 11): 2416-2426, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014660

RESUMO

The probiotic Gram-positive bacterium Lactobacillus casei BL23 is naturally confronted with salt-stress habitats. It has been previously reported that growth in high-salt medium, containing 0.8 M NaCl, leads to modifications in the cell envelope of this bacterium. In this study, we report that L. casei BL23 has an increased ability to form biofilms and to bind cations in high-salt conditions. This behaviour correlated with modifications of surface properties involving teichoic acids, which are important cell wall components. We also showed that, in these high-salt conditions, L. casei BL23 produces less of the cell wall polymer lipoteichoic acid (LTA), and that this anionic polymer has a shorter mean chain length and a lower level of d-alanyl-substitution. Analysis of the transcript levels of the dltABCD operon, encoding the enzymes required for the incorporation of d-alanine into anionic polymers, showed a 16-fold reduction in mRNA levels, which is consistent with a decrease in d-alanine substitutions on LTA. Furthermore, a 13-fold reduction in the transcript levels was observed for the gene LCABL_09330 coding for a putative LTA synthase. To provide further experimental evidence that LCABL_09330 is a true LTA synthase (LtaS) in L. casei BL23, the enzymic domain was cloned and expressed in E. coli. The purified protein was able to hydrolyse the membrane lipid phosphatidylglycerol as expected for an LTA synthase enzyme, and hence LCABL_09330 was renamed LtaS. The purified enzyme showed Mn(2+)-ion dependent activity, and its activity was modulated by differences in NaCl concentration. The decrease in both ltaS transcript levels and enzyme activity observed in high-salt conditions might influence the length of the LTA backbone chain. A putative function of the modified LTA structure is discussed that is compatible with the growth under salt-stress conditions and with the overall envelope modifications taking place during this stress condition.


Assuntos
Parede Celular/química , Lacticaseibacillus casei/citologia , Lacticaseibacillus casei/fisiologia , Lipopolissacarídeos/análise , Pressão Osmótica , Ácidos Teicoicos/análise , Adaptação Fisiológica , Biofilmes/crescimento & desenvolvimento , Cátions/metabolismo , Meios de Cultura/química , Perfilação da Expressão Gênica , Lacticaseibacillus casei/química , Lacticaseibacillus casei/genética , Ligação Proteica
14.
J Microbiol Biotechnol ; 21(2): 147-53, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21364296

RESUMO

Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified Slayers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of Ca2+ and Zn2+, but not of Cd2+, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of Slayer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.


Assuntos
Bacillus/metabolismo , Glicoproteínas de Membrana/metabolismo , Metais/metabolismo , Cátions Bivalentes/metabolismo , Quelantes/metabolismo , Ligação Proteica , Esporos Bacterianos/metabolismo
15.
J Microbiol Methods ; 83(2): 164-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20807556

RESUMO

We here describe a new method for electroporation of Lactobacillus species, obligately homofermentative and facultatively heterofermentative, based on the cell-wall weakening resulting from growth in high-salt media. For L. casei, optimum transformation efficiency of up to 10(5) transformants per microgram of plasmid DNA was achieved following growth in the presence of 0.9 M NaCl. Plasmids of different sizes and replication origins were also similarly transformed. These competent cells could be used either directly or stored frozen, up to 1 month, for future use, with similar efficiency. This protocol was assayed with different Lactobacillus species: L. delbrueckii subsp. lactis, L. paracasei, L. plantarum and L. acidophilus, and it was found that they were transformed with similar efficiency.


Assuntos
Meios de Cultura/química , Eletroporação/métodos , Lactobacillus/genética , Sais/metabolismo , Criopreservação/métodos , Lactobacillus/crescimento & desenvolvimento , Viabilidade Microbiana , Plasmídeos
16.
Appl Environ Microbiol ; 76(3): 974-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19948852

RESUMO

We have previously described a murein hydrolase activity for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356. Here we show that, in combination with nisin, this S-layer acts synergistically to inhibit the growth of pathogenic Gram-negative Salmonella enterica and potential pathogenic Gram-positive bacteria, Staphylococcus aureus and Bacillus cereus. In addition, bacteriolytic effects were observed for the Gram-positive species tested. We postulate that the S-layer enhances the access of nisin into the cell membrane by enabling it to cross the cell wall, while nisin provides the sudden ion-nonspecific dissipation of the proton motive force required to enhance the S-layer murein hydrolase activity.


Assuntos
Antibacterianos/farmacologia , Conservantes de Alimentos/farmacologia , Lactobacillus acidophilus/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Nisina/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Sinergismo Farmacológico , Microbiologia de Alimentos , Genes Bacterianos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Temperatura Alta , Testes de Sensibilidade Microbiana , Permeabilidade , Polilisina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Tensoativos/farmacologia
17.
Res Microbiol ; 160(2): 117-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19063962

RESUMO

The study was focused on the role of the penicillin binding protein PBP4* of Bacillus subtilis during growth in high salinity rich media. Using pbpE-lacZ fusion, we found that transcription of the pbpE gene is induced in stationary phase and by increased salinity. This increase was also corroborated at the translation level for PBP4* by western blot. Furthermore, we showed that a strain harboring gene disruption in the structural gene (pbpE) for the PBP4* endopeptidase resulted in a salt-sensitive phenotype and increased sensitivity to cell envelope active antibiotics (vancomycin, penicillin and bacitracin). Since the pbpE gene seems to be part of a two-gene operon with racX, a racX::pRV300 mutant was obtained. This mutant behaved like the wild-type strain with respect to high salt. Electron microscopy showed that high salt and mutation of pbpE resulted in cell wall defects. Whole cells or purified peptidoglycan from WT cultures grown in high salt medium showed increased autolysis and susceptibility to mutanolysin. We demonstrate through zymogram analysis that PBP4* has murein hydrolyze activity. All these results support the hypothesis that peptidoglycan is modified in response to high salt and that PBP4* contributes to this modification.


Assuntos
Bacillus subtilis/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/fisiologia , Proteínas de Ligação às Penicilinas/fisiologia , Salinidade , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Antibacterianos/farmacologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/ultraestrutura , Bacitracina/farmacologia , Bacteriólise , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Microscopia Eletrônica de Transmissão , N-Acetil-Muramil-L-Alanina Amidase/deficiência , Penicilina G/farmacologia , Proteínas de Ligação às Penicilinas/deficiência , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/deficiência , Transcrição Gênica , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...